Dùng công thức khai triển nhị thức Niu-tơn \({\left( {1 + i} \right)^{19}}\) và công thức Moa-vrơ để tính \(C_{19}^0 - C_{19}^2 + C_{19}^4 Dùng công thức khai triển nhị thức Niu-tơn \\({\\left( {1 + i} \\right)^{19}}\\) và công thức Moa-vrơ để tính \\(C_{19}^0 - C_{19}^2 + C_{19}^4 497292589 truy cập () 86149 trong hôm nay ; 2149485402 lượt xem 573195 trong hôm nay ; 14414091 thành viên Công thức hình học Giải tích 12. 2 trang | Lượt xem: 479 | Lượt tải: 0. Giáo án Giải tích 12 NC tiết 80: Luyện tập dạng lượng giác của số phức và ứng dụng. 3 trang | Lượt xem: 723 | Lượt tải: 0. Giáo án dạy bồi dưỡng môn Toán lớp 12 trường THPT nông cống - Dạng lượng giác của số phức (dành cho học sinh ban nâng cao): Cho số phức dưới dạng đại số, biểu diễn số phức dưới dạng lượng giác, tìm acgumen, sử dụng công thức Moa-vrơ tìm lũy thừa bậc n của số phức; sử dụng dạng lượng giác để thực hiện phép toán giữa hai số phức. Bài viết hướng dẫn cách áp dụng công thức Moa-vrơ (Moivre) để tính căn bậc $n$ của số phức thông qua quá trình thiết lập công thức tổng quát và các ví dụ minh họa đi kèm có lời giải chi tiết. Xem thêm: + Viết số phức dưới dạng lượng giác Đánh giá: 4.15 (297 vote) Tóm tắt: Công thức Moa-vrơ. zn=rn (cosnφ+isinnφ) (n≥1) z n = r n ( cos n φ + i sin n φ ) ( n ≥ 1 ) z^n=r^nleft (cos nvarphi+isin. Nguôn: 6 Bài 3. Dạng lượng giác của số phức và ứng dụng - HocDot.com. Tác giả: hocdot.com. - Công thức Moa-vrơ. 2. Về kỹ năng: Rèn luyện thành thạo các kỹ năng: - Tìm căn bậc 2 của số phức bất kỳ (dưới dạng đại số và dạng lương giác). - Giải phương trình bậc 2: . - Giải các phương trình khác trên C nhờ đưa về giải phương trình bậc 2. - Chuyển số phức từ dạng đại số sang dạng lượng giác và ngược lại. - Vận dụng công thức Moa-vrơ. . Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức Tăng Giáp Administrator Thành viên BQT Tham gia ngày 16/11/14 Bài viết 4,630 Đã được thích 282 Điểm thành tích 83 Giới tính Nam Phương pháp 1. Tính căn bậc hai của số phức Căn bậc hai của số phức $z$ là số phức $w$ thỏa ${w^2} = z$. + Căn bậc hai của $0$ bằng $0.$ + Với $z \ne 0$ và $z = rc{\rm{os}}\varphi + i \sin \varphi $ với $r > 0.$ Đặt $w = Rc{\rm{os}}\theta + i \sin \theta $ với $R > 0$ thì ${{\rm{w}}^2} = z$ ⇔ ${R^2}c{\rm{os}}2\theta + i \sin 2\theta = rc{\rm{os}}\varphi + i \sin \varphi $ $ \Leftrightarrow \left\{ \begin{array}{l} {R^2} = r\\ 2\theta = \varphi + k2\pi , k \in Z \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} R = \sqrt r \\ \theta = \frac{\varphi }{2} + k\pi , k \in Z \end{array} \right.$ Từ đó suy ra Số phức $z = rc{\rm{os}}\varphi + i\sin \varphi $ có $2$ căn bậc hai là ${{\rm{w}}_1} = \sqrt r \left {c{\rm{os}}\frac{\varphi }{2} + i\sin \frac{\varphi }{2}} \right$ và ${{\rm{w}}_2} = \sqrt r \left {c{\rm{os}}\left {\frac{\varphi }{2} + \pi } \right + i \sin \left {\frac{\varphi }{2} + \pi } \right} \right$ $ = – \sqrt r \left {c{\rm{os}}\frac{\varphi }{2} + i\sin \frac{\varphi }{2}} \right.$ 2. Tính căn bậc $n$ của số phức Căn bậc $n$ của số phức $z$ là số phức $w$ thỏa ${w^n} = z$. Với $z \ne 0$ và $z = rc{\rm{os}}\varphi + i \sin \varphi $ với $r > 0.$ Đặt $w = Rc{\rm{os}}\theta + i \sin \theta $ với $R > 0$ thì ${{\rm{w}}^n} = z \Leftrightarrow {R^n}c{\rm{osn}}\theta + i {\mathop{\rm sinn}\nolimits} \theta $ $ = rc{\rm{os}}\varphi + i \sin \varphi $ $ \Leftrightarrow \left\{ \begin{array}{l} {R^n} = r\\ n\theta = \varphi + k2\pi , k \in Z \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} R = \sqrt[n]{r}\\ \theta = \frac{\varphi }{n} + \frac{{k2\pi }}{n}, k \in Z \end{array} \right.$ Bằng cách chọn $k = 0, 1, 2, …, n-1$ ta được $n$ căn bậc $n$ của $z$ là ${w_1} = \sqrt[n]{r}\left {\cos \frac{\varphi }{n} + i\sin \frac{\varphi }{n}} \right.$ ${w_2}$ = $\sqrt[n]{r}\left {\cos \left {\frac{\varphi }{n} + \frac{{2\pi }}{n}} \right + i\sin \left {\frac{\varphi }{n} + \frac{{2\pi }}{n}} \right} \right.$ ….. ${w_n}$ = $\sqrt[n]{r}\cos \left {\frac{\varphi }{n} + \frac{{2\pi n – 1}}{n}} \right$ $ + i\sin \left {\frac{\varphi }{n} + \frac{{2\pi n – 1}}{n}} \right.$ Ví dụ 1. Tìm căn bậc hai của số phức sau và viết dưới dạng lượng giác ${\rm{w}} = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i.$ Ta có $w = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i = \cos \frac{\pi }{3} + i\sin \frac{\pi }{3}.$ Đặt $z = r\left {\cos \varphi + i\sin \varphi } \right$ với $r > 0$ là một căn bậc hai của $w$, ta có ${z^2} = w$ ⇔ ${r^2}\left {\cos 2\varphi + i\sin 2\varphi } \right$ $ = \cos \frac{\pi }{3} + i\sin \frac{\pi }{3}$ $ \Leftrightarrow \left\{ \begin{array}{l} r = 1\\ 2\varphi = \frac{\pi }{3} + k2\pi ,k \in Z \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} r = 1\\ \varphi = \frac{\pi }{6} + k\pi ,k \in Z \end{array} \right.$ Vậy $w$ có hai căn bậc hai là ${z_1} = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$ và ${z_2} = \cos \frac{{7\pi }}{6} + i\sin \frac{{7\pi }}{6}.$ Ví dụ 2. Tính căn bậc ba của số phức sau và viết dưới dạng lượng giác $w = – 1 + i\sqrt 3 .$ Ta có $w = – 1 + i\sqrt 3 = 2\left { – \frac{1}{2} + i\frac{{\sqrt 3 }}{2}} \right$ $ = 2\left {\cos \frac{{2\pi }}{3} + i\sin \frac{{2\pi }}{3}} \right.$ Suy ra $w$ có môđun $R = 2$ và một acgumen $\theta = \frac{{2\pi }}{3}.$ Do đó, căn bậc ba của $w$ là số phức $z$ có môđun $r = \sqrt[3]{2}$ và một acgumen $\phi = \frac{\theta }{3} + \frac{{k2\pi }}{3} = \frac{{2\pi }}{9} + \frac{{k2\pi }}{3},k \in Z.$ Lấy $k = 0,1,2$ thì $\varphi $ có ba giá trị ${\varphi _1} = \frac{{2\pi }}{9}$, ${\varphi _2} = \frac{{2\pi }}{9} + \frac{{2\pi }}{3} = \frac{{8\pi }}{9}$, ${\varphi _3} = \frac{{2\pi }}{9} + \frac{{4\pi }}{3} = \frac{{14\pi }}{9}.$ Vậy $w = – 1 + i\sqrt 3 $ có $3$ căn bậc ba là ${z_1} = \sqrt[3]{2}\left {\cos \frac{{2\pi }}{9} + i\sin \frac{{2\pi }}{9}} \right$, ${z_2} = \sqrt[3]{2}\left {\cos \frac{{8\pi }}{9} + i\sin \frac{{8\pi }}{9}} \right$, ${z_3} = \sqrt[3]{2}\left {\cos \frac{{14\pi }}{9} + i\sin \frac{{14\pi }}{9}} \right.$ Ví dụ 3. Tính căn bậc bốn của số phức sau và viết dưới dạng lượng giác $w = i.$ Ta có $w = i = \cos \frac{\pi }{2} + i\sin \frac{\pi }{2}$ có môđun $R = 1$ và một acgumen $\theta = \frac{\pi }{2}.$ Suy ra căn bậc bốn của $w$ là số phức $z$ có môđun $r = 1$ và một acgumen $\varphi = \frac{\theta }{4} + \frac{{k2\pi }}{4} = \frac{\pi }{8} + \frac{{k\pi }}{2},k \in Z.$ Lấy $k = 0,1,2,3$ ta có $4$ giá trị của $\varphi$ ${\varphi _1} = \frac{\pi }{8}$, ${\varphi _2} = \frac{\pi }{8} + \frac{\pi }{2} = \frac{{5\pi }}{8}$, ${\varphi _3} = \frac{\pi }{8} + \pi = \frac{{9\pi }}{8}$, ${\varphi _4} = \frac{\pi }{8} + \frac{{3\pi }}{2} = \frac{{13\pi }}{8}.$ Bài viết mới nhất Chia sẻ trang này Sau đây Kiến thức Số phức xin thu thập lại các sĩ tử về Áp dụng công thức Moa-vrơ để tính căn bậc n của số phức, thông tin được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luậnBài viết hướng dẫn cách áp dụng công thức Moa-vrơ Moivre để tính căn bậc $n$ của số phức thông qua quá trình thiết lập công thức tổng quát và các ví dụ minh họa đi kèm có lời giải chi thêm + Viết số phức dưới dạng lượng giác + Tìm căn bậc hai của một số phứcPhương pháp1. Tính căn bậc hai của số phức Căn bậc hai của số phức $z$ là số phức $w$ thỏa $w^2 = z$. + Căn bậc hai của $0$ bằng $0.$ + Với $z ne 0$ và $z = rcrm{os}varphi + i sin varphi $ với $r > 0.$ Đặt $w = Rcrm{os}theta + i sin theta $ với $R > 0$ thì ${rm{w}^2} = z$ ⇔ $R^2crm{os}2theta + i sin 2theta = rcrm{os}varphi + i sin varphi $ $ Leftrightarrow left begin{arrayl R^2 = r\ 2theta = varphi + k2pi , k in Z endarray right.$ $ Leftrightarrow left begin{arrayl R = sqrt r \ theta = fracvarphi 2 + kpi , k in Z endarray right.$ Từ đó suy ra Số phức $z = rcrm{os}varphi + isin varphi $ có $2$ căn bậc hai là ${rm{w}_1} = sqrt r left c{rm{os}fracvarphi 2 + isin fracvarphi 2} right$ và ${rm{w}_2} = sqrt r left c{rm{os}left frac{varphi 2 + pi } right + i sin left frac{varphi 2 + pi } right} right$ $ = – sqrt r left c{rm{os}fracvarphi 2 + isin fracvarphi 2} right.$2. Tính căn bậc $n$ của số phứcCăn bậc $n$ của số phức $z$ là số phức $w$ thỏa $w^n = z$. Với $z ne 0$ và $z = rcrm{os}varphi + i sin varphi $ với $r > 0.$ Đặt $w = Rcrm{os}theta + i sin theta $ với $R > 0$ thì ${rm{w}^n} = z Leftrightarrow R^ncrm{osn}theta + i mathop{rm sinnnolimits} theta $ $ = rcrm{os}varphi + i sin varphi $ $ Leftrightarrow left begin{arrayl R^n = r\ ntheta = varphi + k2pi , k in Z endarray right.$ $ Leftrightarrow left begin{arrayl R = sqrt[n]r\ theta = fracvarphi n + frac{k2pi }n, k in Z endarray right.$ Bằng cách chọn $k = 0, 1, 2, …, n-1$ ta được $n$ căn bậc $n$ của $z$ là $w_1 = sqrt[n]rleft cos frac{varphi n + isin fracvarphi n} right.$ $w_2$ = $sqrt[n]rleft cos left {frac{varphi n + frac{2pi }n} right + isin left frac{varphi n + frac{2pi }n} right} right.$ ….. $w_n$ = $sqrt[n]rcos left frac{varphi n + frac{2pi n – 1}n} right$ $ + isin left frac{varphi n + frac{2pi n – 1}n} right.$adsbygoogle = [].push;Ví dụ 1. Tìm căn bậc hai của số phức sau và viết dưới dạng lượng giác $rm{w} = frac12 + frac{sqrt 3 }2i.$Ta có $w = frac12 + frac{sqrt 3 }2i = cos fracpi 3 + isin fracpi 3.$ Đặt $z = rleft cos varphi + isin varphi right$ với $r > 0$ là một căn bậc hai của $w$, ta có $z^2 = w$ ⇔ $r^2left cos 2varphi + isin 2varphi right$ $ = cos fracpi 3 + isin fracpi 3$ $ Leftrightarrow left begin{arrayl r = 1\ 2varphi = fracpi 3 + k2pi ,k in Z endarray right.$ $ Leftrightarrow left begin{arrayl r = 1\ varphi = fracpi 6 + kpi ,k in Z endarray right.$ Vậy $w$ có hai căn bậc hai là $z_1 = cos fracpi 6 + isin fracpi 6$ và $z_2 = cos frac{7pi }6 + isin frac{7pi }6.$Ví dụ 2. Tính căn bậc ba của số phức sau và viết dưới dạng lượng giác $w = – 1 + isqrt 3 .$Ta có $w = – 1 + isqrt 3 = 2left – frac{12 + ifrac{sqrt 3 }2} right$ $ = 2left cos frac{{2pi }3 + isin frac{2pi }3} right.$ Suy ra $w$ có môđun $R = 2$ và một acgumen $theta = frac{2pi }3.$ Do đó, căn bậc ba của $w$ là số phức $z$ có môđun $r = sqrt[3]2$ và một acgumen $phi = fractheta 3 + frac{k2pi }3 = frac{2pi }9 + frac{k2pi }3,k in Z.$ Lấy $k = 0,1,2$ thì $varphi $ có ba giá trị $varphi _1 = frac{2pi }9$, $varphi _2 = frac{2pi }9 + frac{2pi }3 = frac{8pi }9$, $varphi _3 = frac{2pi }9 + frac{4pi }3 = frac{14pi }9.$ Vậy $w = – 1 + isqrt 3 $ có $3$ căn bậc ba là $z_1 = sqrt[3]2left cos frac{{2pi }9 + isin frac{2pi }9} right$, $z_2 = sqrt[3]2left cos frac{{8pi }9 + isin frac{8pi }9} right$, $z_3 = sqrt[3]2left cos frac{{14pi }9 + isin frac{14pi }9} right.$Ví dụ 3. Tính căn bậc bốn của số phức sau và viết dưới dạng lượng giác $w = i.$Ta có $w = i = cos fracpi 2 + isin fracpi 2$ có môđun $R = 1$ và một acgumen $theta = fracpi 2.$ Suy ra căn bậc bốn của $w$ là số phức $z$ có môđun $r = 1$ và một acgumen $varphi = fractheta 4 + frac{k2pi }4 = fracpi 8 + frac{kpi }2,k in Z.$ Lấy $k = 0,1,2,3$ ta có $4$ giá trị của $varphi$ $varphi _1 = fracpi 8$, $varphi _2 = fracpi 8 + fracpi 2 = frac{5pi }8$, $varphi _3 = fracpi 8 + pi = frac{9pi }8$, $varphi _4 = fracpi 8 + frac{3pi }2 = frac{13pi }8.$ Bài viết hướng dẫn cách áp dụng công thức Moa-vrơ Moivre để tính căn bậc $n$ của số phức thông qua quá trình thiết lập công thức tổng quát... Bài viết hướng dẫn cách áp dụng công thức Moa-vrơ Moivre để tính căn bậc $n$ của số phức thông qua quá trình thiết lập công thức tổng quát và các ví dụ minh họa đi kèm có lời giải chi tiết. Xem thêm + Viết số phức dưới dạng lượng giác + Tìm căn bậc hai của một số phức Phương pháp 1. Tính căn bậc hai của số phức Căn bậc hai của số phức $z$ là số phức $w$ thỏa ${w^2} = z$. + Căn bậc hai của $0$ bằng $0.$ + Với $z \ne 0$ và $z = rc{\rm{os}}\varphi + i \sin \varphi $ với $r > 0.$ Đặt $w = Rc{\rm{os}}\theta + i \sin \theta $ với $R > 0$ thì ${{\rm{w}}^2} = z$ ⇔ ${R^2}c{\rm{os}}2\theta + i \sin 2\theta = rc{\rm{os}}\varphi + i \sin \varphi $ $ \Leftrightarrow \left\{ \begin{array}{l} {R^2} = r\\ 2\theta = \varphi + k2\pi , k \in Z \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} R = \sqrt r \\ \theta = \frac{\varphi }{2} + k\pi , k \in Z \end{array} \right.$ Từ đó suy ra Số phức $z = rc{\rm{os}}\varphi + i\sin \varphi $ có $2$ căn bậc hai là ${{\rm{w}}_1} = \sqrt r \left {c{\rm{os}}\frac{\varphi }{2} + i\sin \frac{\varphi }{2}} \right$ và ${{\rm{w}}_2} = \sqrt r \left {c{\rm{os}}\left {\frac{\varphi }{2} + \pi } \right + i \sin \left {\frac{\varphi }{2} + \pi } \right} \right$ $ = – \sqrt r \left {c{\rm{os}}\frac{\varphi }{2} + i\sin \frac{\varphi }{2}} \right.$ 2. Tính căn bậc $n$ của số phức Căn bậc $n$ của số phức $z$ là số phức $w$ thỏa ${w^n} = z$. Với $z \ne 0$ và $z = rc{\rm{os}}\varphi + i \sin \varphi $ với $r > 0.$ Đặt $w = Rc{\rm{os}}\theta + i \sin \theta $ với $R > 0$ thì ${{\rm{w}}^n} = z \Leftrightarrow {R^n}c{\rm{osn}}\theta + i {\mathop{\rm sinn}\nolimits} \theta $ $ = rc{\rm{os}}\varphi + i \sin \varphi $ $ \Leftrightarrow \left\{ \begin{array}{l} {R^n} = r\\ n\theta = \varphi + k2\pi , k \in Z \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} R = \sqrt[n]{r}\\ \theta = \frac{\varphi }{n} + \frac{{k2\pi }}{n}, k \in Z \end{array} \right.$ Bằng cách chọn $k = 0, 1, 2, …, n-1$ ta được $n$ căn bậc $n$ của $z$ là ${w_1} = \sqrt[n]{r}\left {\cos \frac{\varphi }{n} + i\sin \frac{\varphi }{n}} \right.$ ${w_2}$ = $\sqrt[n]{r}\left {\cos \left {\frac{\varphi }{n} + \frac{{2\pi }}{n}} \right + i\sin \left {\frac{\varphi }{n} + \frac{{2\pi }}{n}} \right} \right.$ ….. ${w_n}$ = $\sqrt[n]{r}\cos \left {\frac{\varphi }{n} + \frac{{2\pi n – 1}}{n}} \right$ $ + i\sin \left {\frac{\varphi }{n} + \frac{{2\pi n – 1}}{n}} \right.$ [ads] Ví dụ 1. Tìm căn bậc hai của số phức sau và viết dưới dạng lượng giác ${\rm{w}} = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i.$ Ta có $w = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i = \cos \frac{\pi }{3} + i\sin \frac{\pi }{3}.$ Đặt $z = r\left {\cos \varphi + i\sin \varphi } \right$ với $r > 0$ là một căn bậc hai của $w$, ta có ${z^2} = w$ ⇔ ${r^2}\left {\cos 2\varphi + i\sin 2\varphi } \right$ $ = \cos \frac{\pi }{3} + i\sin \frac{\pi }{3}$ $ \Leftrightarrow \left\{ \begin{array}{l} r = 1\\ 2\varphi = \frac{\pi }{3} + k2\pi ,k \in Z \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} r = 1\\ \varphi = \frac{\pi }{6} + k\pi ,k \in Z \end{array} \right.$ Vậy $w$ có hai căn bậc hai là ${z_1} = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$ và ${z_2} = \cos \frac{{7\pi }}{6} + i\sin \frac{{7\pi }}{6}.$ Ví dụ 2. Tính căn bậc ba của số phức sau và viết dưới dạng lượng giác $w = – 1 + i\sqrt 3 .$ Ta có $w = – 1 + i\sqrt 3 = 2\left { – \frac{1}{2} + i\frac{{\sqrt 3 }}{2}} \right$ $ = 2\left {\cos \frac{{2\pi }}{3} + i\sin \frac{{2\pi }}{3}} \right.$ Suy ra $w$ có môđun $R = 2$ và một acgumen $\theta = \frac{{2\pi }}{3}.$ Do đó, căn bậc ba của $w$ là số phức $z$ có môđun $r = \sqrt[3]{2}$ và một acgumen $\phi = \frac{\theta }{3} + \frac{{k2\pi }}{3} = \frac{{2\pi }}{9} + \frac{{k2\pi }}{3},k \in Z.$ Lấy $k = 0,1,2$ thì $\varphi $ có ba giá trị ${\varphi _1} = \frac{{2\pi }}{9}$, ${\varphi _2} = \frac{{2\pi }}{9} + \frac{{2\pi }}{3} = \frac{{8\pi }}{9}$, ${\varphi _3} = \frac{{2\pi }}{9} + \frac{{4\pi }}{3} = \frac{{14\pi }}{9}.$ Vậy $w = – 1 + i\sqrt 3 $ có $3$ căn bậc ba là ${z_1} = \sqrt[3]{2}\left {\cos \frac{{2\pi }}{9} + i\sin \frac{{2\pi }}{9}} \right$, ${z_2} = \sqrt[3]{2}\left {\cos \frac{{8\pi }}{9} + i\sin \frac{{8\pi }}{9}} \right$, ${z_3} = \sqrt[3]{2}\left {\cos \frac{{14\pi }}{9} + i\sin \frac{{14\pi }}{9}} \right.$ Ví dụ 3. Tính căn bậc bốn của số phức sau và viết dưới dạng lượng giác $w = i.$ Ta có $w = i = \cos \frac{\pi }{2} + i\sin \frac{\pi }{2}$ có môđun $R = 1$ và một acgumen $\theta = \frac{\pi }{2}.$ Suy ra căn bậc bốn của $w$ là số phức $z$ có môđun $r = 1$ và một acgumen $\varphi = \frac{\theta }{4} + \frac{{k2\pi }}{4} = \frac{\pi }{8} + \frac{{k\pi }}{2},k \in Z.$ Lấy $k = 0,1,2,3$ ta có $4$ giá trị của $\varphi$ ${\varphi _1} = \frac{\pi }{8}$, ${\varphi _2} = \frac{\pi }{8} + \frac{\pi }{2} = \frac{{5\pi }}{8}$, ${\varphi _3} = \frac{\pi }{8} + \pi = \frac{{9\pi }}{8}$, ${\varphi _4} = \frac{\pi }{8} + \frac{{3\pi }}{2} = \frac{{13\pi }}{8}.$ Nguồn Bài viết hướng dẫn cách áp dụng công thức Moa-vrơ Moivre để tính căn bậc $n$ của số phức thông qua quá trình thiết lập công thức tổng quát và các ví dụ minh họa đi kèm có lời giải chi thêm + Viết số phức dưới dạng lượng giác + Tìm căn bậc hai của một số phứcPhương pháp 1. Tính căn bậc hai của số phức Căn bậc hai của số phức $z$ là số phức $w$ thỏa ${w^2} = z$. + Căn bậc hai của $0$ bằng $0.$ + Với $z \ne 0$ và $z = rc{\rm{os}}\varphi + i \sin \varphi $ với $r > 0.$ Đặt $w = Rc{\rm{os}}\theta + i \sin \theta $ với $R > 0$ thì ${{\rm{w}}^2} = z$ ⇔ ${R^2}c{\rm{os}}2\theta + i \sin 2\theta = rc{\rm{os}}\varphi + i \sin \varphi $ $ \Leftrightarrow \left\{ \begin{array}{l} {R^2} = r\\ 2\theta = \varphi + k2\pi , k \in Z \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} R = \sqrt r \\ \theta = \frac{\varphi }{2} + k\pi , k \in Z \end{array} \right.$ Từ đó suy ra Số phức $z = rc{\rm{os}}\varphi + i\sin \varphi $ có $2$ căn bậc hai là ${{\rm{w}}_1} = \sqrt r \left {c{\rm{os}}\frac{\varphi }{2} + i\sin \frac{\varphi }{2}} \right$ và ${{\rm{w}}_2} = \sqrt r \left {c{\rm{os}}\left {\frac{\varphi }{2} + \pi } \right + i \sin \left {\frac{\varphi }{2} + \pi } \right} \right$ $ = – \sqrt r \left {c{\rm{os}}\frac{\varphi }{2} + i\sin \frac{\varphi }{2}} \right.$2. Tính căn bậc $n$ của số phức Căn bậc $n$ của số phức $z$ là số phức $w$ thỏa ${w^n} = z$. Với $z \ne 0$ và $z = rc{\rm{os}}\varphi + i \sin \varphi $ với $r > 0.$ Đặt $w = Rc{\rm{os}}\theta + i \sin \theta $ với $R > 0$ thì ${{\rm{w}}^n} = z \Leftrightarrow {R^n}c{\rm{osn}}\theta + i {\mathop{\rm sinn}\nolimits} \theta $ $ = rc{\rm{os}}\varphi + i \sin \varphi $ $ \Leftrightarrow \left\{ \begin{array}{l} {R^n} = r\\ n\theta = \varphi + k2\pi , k \in Z \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} R = \sqrt[n]{r}\\ \theta = \frac{\varphi }{n} + \frac{{k2\pi }}{n}, k \in Z \end{array} \right.$ Bằng cách chọn $k = 0, 1, 2, …, n-1$ ta được $n$ căn bậc $n$ của $z$ là ${w_1} = \sqrt[n]{r}\left {\cos \frac{\varphi }{n} + i\sin \frac{\varphi }{n}} \right.$ ${w_2}$ = $\sqrt[n]{r}\left {\cos \left {\frac{\varphi }{n} + \frac{{2\pi }}{n}} \right + i\sin \left {\frac{\varphi }{n} + \frac{{2\pi }}{n}} \right} \right.$ ….. ${w_n}$ = $\sqrt[n]{r}\cos \left {\frac{\varphi }{n} + \frac{{2\pi n – 1}}{n}} \right$ $ + i\sin \left {\frac{\varphi }{n} + \frac{{2\pi n – 1}}{n}} \right.$ [ads] Ví dụ 1. Tìm căn bậc hai của số phức sau và viết dưới dạng lượng giác ${\rm{w}} = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i.$Ta có $w = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i = \cos \frac{\pi }{3} + i\sin \frac{\pi }{3}.$ Đặt $z = r\left {\cos \varphi + i\sin \varphi } \right$ với $r > 0$ là một căn bậc hai của $w$, ta có ${z^2} = w$ ⇔ ${r^2}\left {\cos 2\varphi + i\sin 2\varphi } \right$ $ = \cos \frac{\pi }{3} + i\sin \frac{\pi }{3}$ $ \Leftrightarrow \left\{ \begin{array}{l} r = 1\\ 2\varphi = \frac{\pi }{3} + k2\pi ,k \in Z \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} r = 1\\ \varphi = \frac{\pi }{6} + k\pi ,k \in Z \end{array} \right.$ Vậy $w$ có hai căn bậc hai là ${z_1} = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$ và ${z_2} = \cos \frac{{7\pi }}{6} + i\sin \frac{{7\pi }}{6}.$Ví dụ 2. Tính căn bậc ba của số phức sau và viết dưới dạng lượng giác $w = – 1 + i\sqrt 3 .$Ta có $w = – 1 + i\sqrt 3 = 2\left { – \frac{1}{2} + i\frac{{\sqrt 3 }}{2}} \right$ $ = 2\left {\cos \frac{{2\pi }}{3} + i\sin \frac{{2\pi }}{3}} \right.$ Suy ra $w$ có môđun $R = 2$ và một acgumen $\theta = \frac{{2\pi }}{3}.$ Do đó, căn bậc ba của $w$ là số phức $z$ có môđun $r = \sqrt[3]{2}$ và một acgumen $\phi = \frac{\theta }{3} + \frac{{k2\pi }}{3} = \frac{{2\pi }}{9} + \frac{{k2\pi }}{3},k \in Z.$ Lấy $k = 0,1,2$ thì $\varphi $ có ba giá trị ${\varphi _1} = \frac{{2\pi }}{9}$, ${\varphi _2} = \frac{{2\pi }}{9} + \frac{{2\pi }}{3} = \frac{{8\pi }}{9}$, ${\varphi _3} = \frac{{2\pi }}{9} + \frac{{4\pi }}{3} = \frac{{14\pi }}{9}.$ Vậy $w = – 1 + i\sqrt 3 $ có $3$ căn bậc ba là ${z_1} = \sqrt[3]{2}\left {\cos \frac{{2\pi }}{9} + i\sin \frac{{2\pi }}{9}} \right$, ${z_2} = \sqrt[3]{2}\left {\cos \frac{{8\pi }}{9} + i\sin \frac{{8\pi }}{9}} \right$, ${z_3} = \sqrt[3]{2}\left {\cos \frac{{14\pi }}{9} + i\sin \frac{{14\pi }}{9}} \right.$Ví dụ 3. Tính căn bậc bốn của số phức sau và viết dưới dạng lượng giác $w = i.$Ta có $w = i = \cos \frac{\pi }{2} + i\sin \frac{\pi }{2}$ có môđun $R = 1$ và một acgumen $\theta = \frac{\pi }{2}.$ Suy ra căn bậc bốn của $w$ là số phức $z$ có môđun $r = 1$ và một acgumen $\varphi = \frac{\theta }{4} + \frac{{k2\pi }}{4} = \frac{\pi }{8} + \frac{{k\pi }}{2},k \in Z.$ Lấy $k = 0,1,2,3$ ta có $4$ giá trị của $\varphi$ ${\varphi _1} = \frac{\pi }{8}$, ${\varphi _2} = \frac{\pi }{8} + \frac{\pi }{2} = \frac{{5\pi }}{8}$, ${\varphi _3} = \frac{\pi }{8} + \pi = \frac{{9\pi }}{8}$, ${\varphi _4} = \frac{\pi }{8} + \frac{{3\pi }}{2} = \frac{{13\pi }}{8}.$ Bài viết hướng dẫn cách áp dụng công thức moa-vre moivre để tính căn bậc hai $n$ của một số phức, thông qua quá trình xây dựng công thức tổng quát và các ví dụ minh họa kèm theo. Miêu tả cụ thể. Xem thêm + Viết số phức dưới dạng hàm lượng giác + Tìm căn bậc hai của số phức Phương pháp 1. Tính căn bậc hai của một số phức Căn bậc hai của số phức $z$ là số phức $w$ thỏa mãn ${w ^2} = z$. + căn bậc hai của $0$ bằng $0.$ + $z \ne 0$ và $z = rc{\rm{os}}\varphi + i \sin \varphi $ với $ r > 0.$ Đặt $w = rc{\rm{os}}\theta + i \sin \theta $ và $r >; 0$ Sau đó ${{\rm {w}} ^2} = z$ ⇔ ${r^2}c{\rm{os}}2\theta + i \sin 2\theta = rc{\rm{ os}} varphi + i \sin \varphi $ $ \leftrightarrow \left\{ \begin{array}{l} {r^2} = r\\ 2\theta = \varphi + k2\pi , k \in z \end{array} \right.$ $ \leftrightarrow \left\{ \begin{ array}{l} r = \sqrt r \ \theta = \frac{\varphi }{2} + k\pi , k \in z \end{array} \right .$ Từ đây Complex $z = r c{ rm{os}}\varphi + i\sin \varphi $ có $2$ và căn bậc hai là ${{\rm {w} }_1} = \sqrt r left {c{ rm{os}}\frac{\varphi }{2} + i\sin \frac{\varphi }{ 2}} \right$ và ${{ \rm{w}} _2} = \sqrt r \left {c{\rm{os}}\left {\frac{ varphi } {2} + \pi } right + i \ sin \left {\frac{\varphi }{2} + \pi } \right} \right $ $ = – \sqrt r \left {c{\rm{ os}}\frac{\varphi }{2} + i\sin \frac{\varphi }{2}} \right .$ 2. Tính căn bậc hai của một số phức $n$Căn bậc hai $n$ của một số phức $z$ là một số phức $w$ sao cho ${w^n} = z$. trong đó $z \ne 0$ và $z = rc{\rm{os}}\varphi + i \sin \varphi $ trong đó $r >; 0.$ set $w = r c{\rm{os}}\theta + i \sin \theta $ và $r >; 0$ Sau đó ${{\rm{w}}^n} = z \leftrightarrow { r^n}c{\rm{osn}}\theta + i {\mathop{\rm sinn}\nolimits} \theta $ $ = rc{\rm{os} }\varphi + i \sin \varphi $ $ \leftrightarrow \left\{ \begin {array}{l} {r^n} = r\\ n\theta = varphi + k2\pi , k \in z \end{array} \right.$ $ \ leftrightarrow \left\{ \begin{array}{l} r = \sqrt[n ]{r}\\ \theta = \frac{\varphi }{n} + \frac {{k2\pi }}{n}, k \in z \end{array} \right.$ Bằng cách chọn $k = 0, 1, 2, …, n-1$, chúng ta có được căn bậc hai $n$ của $n $ $z$ là ${w_1} = \sqrt[n ]{r }\left {\cos \frac{\varphi }{n} + i\sin frac{\varphi }{n}} \right.$ ${w_2} $ = $ \sqrt[n]{r}\left {\cos \left {\frac { \varphi }{n} + \frac{{2\pi }}{n }} right + i\sin \left {\frac{\varphi }{n} + frac{{2\pi }}{n}} \right} \ phải. $ ….. ${w_n}$ = $\sqrt[n]{r}\cos left {\frac{\varphi }{n} + \frac{ {2\pi n – 1}}{n}} \right$ $ + i\sin \left {\frac{\varphi }{n} + \frac{{2\pi n – 1 }}{n}} \right.$ [ads] Ví dụ 1. Tìm căn bậc hai của các số phức sau và viết chúng dưới dạng hàm lượng giác ${\rm {w}} = \frac {1}{2} + \frac{{\sqrt 3 }}{2}i.$ Ta có $w = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i = \cos \frac{\pi }{3} + i \sin \frac{\pi }{3}.$ Đặt $z = r\left {\cos \varphi + i\sin \varphi } \right$ với $r > ; 0$ là căn bậc hai của $w$, ta có ${z^2} = w$ ⇔ ${r^2}\left {\cos 2\varphi + i\sin 2 varphi } \right$ $ = \cos \frac{\pi }{3} + i\sin \frac{\pi }{3}$ $ \leftrightarrow \left\ { begin{array}{l} r = 1\\ 2\varphi = \frac{\pi }{3} + k2\pi ,k \in z \end{array} right.$ $ \leftrightarrow \left\{ \begin{array}{l} r = 1\\ \varphi = \frac{\pi }{6} + k\ pi , k \in z \end{array} \right.$ Vậy $w$ có hai căn bậc hai ${z_1} = \cos \frac{\pi }{6} + i \ sin frac{\pi }{6}$ và ${z_2} = \cos \frac{{7\pi }}{6} + i\sin \frac{{7 pi } { 6}.$ Ví dụ 2. Tính căn bậc hai của số phức sau và viết dưới dạng lượng giác $w = – 1 + i\sqrt 3 .$ Ta có $w = – 1 + i\sqrt 3 = 2\left { – \frac{1}{2} + i\frac{{\sqrt 3 }}{2} } \right$ $ = 2\left {\cos \frac{{2\pi }}{3} + i\sin \frac{{2\pi }}{3} } \right.$ suy ra rằng $w$ có mô đun $r = 2$ và lũy tích $\theta = \frac{{2\pi }}{3}.$ nên căn bậc hai của $w$ là một số phức $z$ với modulo $r = \sqrt[3]{2}$ và acgumen $\phi = \frac{\theta }{3} + \frac{{ k2 pi }}{3} = \frac{{2\pi }}{9} + \frac{{k2\pi }}{3},k \in z.$ Lấy $k = 0 , 1,2$ Khi đó $\varphi $ có ba giá trị ${\varphi _1} = \frac{{2\pi }}{9}$, ${\varphi _2} = \ frac { {2\pi }}{9} + \frac{{2\pi }}{3} = \frac{{8\pi }}{9}$, ${\ varphi _3 } = \frac{{2\pi }}{9} + \frac{{4\pi }}{3} = \frac{{14\pi }}{9}.$ Vậy $ w = – 1 + i\sqrt 3 $ có căn bậc hai là $3$ ${z_1} = \sqrt[3]{2}\left {\cos \frac{{2 pi }}{ 9} + i\sin \frac{{2\pi }}{9}} \right$, ${z_2} = \sqrt[3]{2}\left { \cos \frac{{8\pi }}{9} + i\sin \frac{{8\pi }}{9}} \right$, ${z_3} = \ sqrt[3 ]{2}\left {\cos \frac{{14\pi }}{9} + i\sin \frac{{14\pi }}{9}} right.$ Ví dụ 3. Tính căn bậc hai của các số phức sau và viết dưới dạng lượng giác $w = i.$ Ta có $w = i = \cos \frac{\pi }{2} + i\sin \frac{\pi }{2}$ môđun $r = 1$ và An bộ tích lũy $\theta = \frac{\pi }{2}.$ suy ra rằng căn bậc hai của $w$ là một số phức $z$ với modulo $r = 1$ và một bộ tích lũy $\varphi = \frac{\theta }{4} + \frac{{k2\pi }}{4} = \frac{\pi }{8} + \frac{{k\pi } }{2},k \in z.$ Lấy $k = ta được giá trị $4$ $\varphi$ ${\varphi _1} = \frac{ pi } {8}$, ${\varphi _2} = \frac{\pi }{8} + \frac{\pi }{2} = \frac{{5\pi } }{ 8 }$, ${\varphi _3} = \frac{\pi }{8} + \pi = \frac{{9\pi }}{8}$, ${\ varphi _4 } = \frac{\pi }{8} + \frac{{3\pi }}{2} = \frac{{13\pi }}{8}.$

công thức moa vrơ